Bitvector Rank \& Select: Primitives of succinct data structures

Thinking theoretically about data structure size

Assume that storing some data, in an information-theoretically optimal manner, requires Z bits

Representation of this data is:
Implicit: Z + O(1) bits
Only a constant size larger than the theoretical minimum
Succinct: $Z+o(Z)$ bits
Z bits, plus some term strictly smaller than Z bits
Compact: O(Z) bits
On the order of Z bits (grows linearly in Z)

Thinking theoretically about data structure size

The idea of succinct data structures was first introduced by Jacobson in his thesis "Succinct static data structures"*

In this thesis, among other things, he introduced succinct representations of trees and graphs that could be efficiently navigated.

As data sizes grow large, data structures that consume a lot of extra space become increasingly less feasible and so succinct data structures become increasingly important.

The rank and select operations become the basic building blocks of succinct data structures.

Slides for the following taken from:
https://www.cs.helsinki.fi/u/puglisi/dct2015/slides10.pdf
credit to Simon J. Puglisi, University of Helsinki

Succinct Data Structures

- Succinct data structure
$=$ succinct representation of data +a succinct index
- (usually static)
- High-level goal: reduce space so the data structure might fit in RAM and therefore be faster to use
- Examples
- Sets
- Trees, graphs
- Strings
- Permutations, functions

Succinct Representation

- A representation of data whose size (roughly) matches the information-theoretic lower bound
- If the input is taken from L distinct possible inputs, then its information-theoretic lower bound is ceil($\log \mathrm{L})$ bits
- To be considered succinct a data structure must use:

$$
\text { ceil }(\log \mathrm{L})+o(\log \mathrm{~L}) \text { bits }
$$

- Example: a lower bound for a set S , subset of $\{1,2, \ldots, \mathrm{n}\}$
$-\log \left(2^{n}\right)=n$ bits
- $\mathrm{n}=3$ we have 8 distinct sets... so d.s. will need at least 3 bits \varnothing
$\{1\} \quad\{2\} \quad\{3\}$
$\{1,2\} \quad\{1,3\} \quad\{2,3\}$
$\{1,2,3\}$

Succinct Index

- Auxiliary data structure to support queries on the succinct representation
- Size: o(logL) bits
- The index should allow queries/operations on the succinct representation in (almost) the same time complexity as using a conventional data structure
- This is the aim anyway
- Computational model is the word RAM
- Assume word length w = loglogL
- (this is the same pointer size as conventional data structures)
- read/write w bits of memory in O(1) time
- arithmetic/logical operations on w bit numbers take $O(1)$ time
- +,-,,,/,log,\&,|,!,>>,<<

Binary rank and select

- The ability to answer rank and select queries over bit vectors (binary strings, bit arrays) is essential for implementing succinct data structures
- Given a binary string $B[1 . . n]$
- rank $_{B}(\mathrm{i})$ returns the number of 1 bits in $\mathrm{B}[1 . . \mathrm{i}]$
- select $_{B}(\mathrm{i})$ returns the position of the $\mathrm{i}^{\text {th }} 1$ bit in B

Naïve rank

- To answer rank(i) scan $B[1 . . i]$ and count 1-bits
- Simple but slow
- $O(\mathrm{i})$ time $=O(n)$ time in the worst case
- How can we do better?
- After all, what are we?

(Slightly) Less naïve rank

- Store an table A[1..n], containing the rank answers

		2	3		5				9	10	11		12	13	14		
B	1	0	0	1	0	1	1	1	0	1	0		0	1	0	1	0
A	1	1	1	2	2	3	4	5	5	6	6		6	7	7	8	8

- $A[i]=\operatorname{rank}(i)$
- Now rank(i) takes constant time - just an array lookup!
- Drawback:
- A requires nlogn bits - logn times the size of B - not succinct!
- We'd like a solution with $O(1)$ queries and $o(n)$ extra space...

We want $O(1)$ queries with $o(n)$ extra bits...

- General approach will be to precompute some tables
- Each table stores part of the answer to every query
- For any given query, we can extract needed parts in $0(1)$ time
- The total size of the tables is o(n) bits

- Premise:
- Can read $\mathrm{O}(\mathrm{logn})$ bits into an integer in range $1 . . \mathrm{n}$ in $\mathrm{O}(1)$ time
- However, to inspect each of those bits take O(logn) time

Tables : Superblocks

- Divide B into superblocks of size $s=\log ^{2} n / 2=4^{*} 4 / 2=8$
- Build a small table R_{s} containing ranks for only some positions

- Store in $R_{s}[j]=\operatorname{rank}_{B}\left(j^{*} s\right)$, for all $0 \leq j<n / s$

Tables : Blocks

- Divide each superblock into blocks of size $b=\operatorname{logn} / 2=2$
- Build a table R_{b} which contains the rank from the start of each block to the start of its superblock

- Store $R_{b}[k / b]=\operatorname{rank}_{B}\left(k^{*} s\right)-\operatorname{rank}_{B}\left(j^{*} s\right)$, for all $0 \leq k<n / b$

Intermission

- What we have so far (tables R_{s} and R_{b}) almost gets us the answer we're after

- $\operatorname{rank}_{B}(\mathrm{i}) \approx \mathrm{R}_{\mathrm{s}}[\mathrm{i} / \mathrm{s}]+\mathrm{R}_{\mathrm{b}}[\mathrm{i} / b]$
- Just need to answer in-block queries in $\mathrm{O}(1)$ time

Tables : Resolving in-block queries

- Solution? Use another table!
- Blocks have size $b=\log _{2} n / 2$
- There are $2^{\text {b }}$ such blocks possible
- In each block there are b possible rank queries
- Each answer (relative to the block) is in the range 1..b

	Type	0		1	$\operatorname{rank}(0)$
	0	$\operatorname{rank}(1)$			
R_{p}	0	0	0	0	0
	1	0	1	0	1
	2	1	0	1	1
	3	1	1	1	2

Final Data Structure

	Type	0	1	rank(0)	rank(1)
	0	0	0	0	0
R_{p}	1	0	1	0	1
	2	1	0	1	1
	3	1	1	1	2

Size of table for within-block queries

- Blocks have size $b=\log _{2} n / 2$
- There are 2^{b} such blocks possible
- In each block there are b possible rank queries
- Each answer (relative to the block) is in the range 1..b

R_{p}	Type	0	1	rank(0) rank(1)	
	0	0	0	0	0
	1	0	1	0	1
	2	1	0	1	1
	3	1	1	1	2

- Therefore size of R_{p}, the in-block data structure is
- 2^{b} * $b * \log b=n^{1 / 2 *} \log n^{*} \log \log n / 2$ bits $=o(n)$ bits

Summing up sizes...

- The size of R_{s}, the superblock data structure is
- $2 n / \log ^{2} n$ superblocks, each of size logn bits
- $\left(n / \log ^{2} n\right)^{*} \log n=2 n /$ logn bits $=o(n)$ bits
- The size of R_{b}, the block data structure is
- 2n/logn blocks, each of size loglogn bits
- 2nloglogn/logn bits = o(n) bits
- $R_{s}+R_{b}+R_{p}=O(n)$ extra bits for $O(1)$ time rank queries
- It is possible to construct this data structure in $O(n)$ time

Variations

- Just store $R_{s}+$ use manual counting within superblocks
- Saves space for R_{b} and R_{p}, takes time $O\left(\log ^{2} n\right)$ per query
- Store R_{s} and $R_{b}+$ use manual counting within blocks
- Saves only space for R_{p}, takes time O (logn) per query
- Use different superblock \& block sizes
- No more theoretical guarantees, but...
- Perhaps faster in practice: blocks that are multiples of word sizes (32-bits) can be faster to handle

Summary of rank

- Rank index takes O (nloglogn/logn) $=o(n)$ bits so we use $n+$ $o(n)$ overall and can answer queries in $O(1)$ time
- While it is sublinear, we'd still like the o(n) term to be small
- Best is by Patrastcu: $\mathrm{O}\left(\mathrm{n} / \log ^{\mathrm{k}} \mathrm{n}\right)$ bits, $\mathrm{O}(\mathrm{k})$ time queries
- Dynamic solutions exist
- Queries no longer constant: O(logn/loglogn) time (Raman et al.)

Relationship to select(i)

- We can use our solution to rank to get a (fairly) efficient solution to select(i), with this observation:
- If $\operatorname{rank}(n / 2)>i$, then the $i^{\text {th }} 1$-bit is in $B[1 . . n / 2]$
- Otherwise it is in $\mathrm{B}[\mathrm{n} / 2+1 . . \mathrm{n}]$
select $_{B}(3)$

Relationship to select(i)

- Applying this idea recursively to arrive at select(i)
- O($\left.\log _{2} \mathrm{n}\right)$ time, o(n) space
- O(1) time, o(n) space solutions for select also exist
- Slightly more complicated than O(1) rank
- (Munro and Clark)
- Similar variations as we discussed with rank (trading space for query time) are also possible

Information Systems 73 (2018) 25-34

Rank and select: Another lesson learned
Szymon Grabowski*, Marcin Raniszewski
Lodz University of Technology, Institute of Applied Computer Science, Al. Politechniki 11, Łódź 90-924, Poland

These rank \& select operations work over a binary alphabet - can be extended

```
High-Order Entropy-Compressed Text Indexes
Roberto Grossi* \({ }^{*} \quad\) Ankur Gupta \({ }^{\dagger} \quad\) Jeffrey Scott Vitter \({ }^{\ddagger}\)
```

Introduces the idea of the wavelet tree, a versatile index that can be extended to arbitrary alphabets. We'll discuss the simplest of variants according to the exposition of:

Wavelet Trees for All *

Gonzalo Navarro
Dept. of Computer Science, University of Chile. gnavarro@dcc.uchile.cl

Preliminaries

$\mathrm{S}[1, \mathrm{n}]=\mathrm{s}_{1} \mathrm{~S}_{2} \ldots \mathrm{~s}_{\mathrm{n}}$ is a sequence of symbols where si_{i} in Σ
$\Sigma=[1 \ldots \sigma]$ is an alphabet of symbols
Representing S requires $n *[\lg \sigma 1=n * \lg \sigma+O(n)$ bits.

Wavelet tree: balanced binary tree with σ nodes, where each subtree is also a wavelet tree (i.e. it is recursive)

Preliminaries

Structure. A wavelet tree [54] for sequence $S[1, n]$ over alphabet [1.. σ] can be described recursively, over a sub-alphabet range $[a . . b] \subseteq[1 . . \sigma]$. A wavelet tree over alphabet $[a . . b]$ is a binary balanced tree with $b-a+1$ leaves. If $a=b$, the tree is just a leaf labeled a. Else it has an internal root node, $v_{\text {root }}$, that represents $S[1, n]$. This root stores a bitmap $B_{v_{\text {root }}}[1, n]$ defined as follows: if $S[i] \leq(a+b) / 2$ then $B_{v_{\text {root }}}[i]=0$, else $B_{v_{\text {root }}}[i]=1$. We define $S_{0}\left[1, n_{0}\right]$ as the subsequence of $S[1, n]$ formed by the symbols $c \leq(a+b) / 2$, and $S_{1}\left[1, n_{1}\right]$ as the subsequence of $S[1, n]$ formed by the symbols $c>(a+b) / 2$. Then, the left child of $v_{\text {root }}$ is a wavelet tree for $S_{0}\left[1, n_{0}\right]$ over alphabet $[a . .\lfloor(a+b) / 2\rfloor]$ and the right child of $v_{\text {root }}$ is a wavelet tree for $S_{1}\left[1, n_{1}\right]$ over alphabet $[1+\lfloor(a+b) / 2\rfloor . . b]$.

Preliminaries

Fig. 1. A wavelet tree on string $S=$ "alabar a la alabarda". We draw the spaces as underscores. The subsequences of S and the subsets of Σ labeling the edges are drawn for illustration purposes; the tree stores only the topology and the bitmaps.

Example: Rank

Consider asking for the rank of this "a"

Example: Rank

Consider asking for the rank of this "a"

how many _, a,b occur up to (and including) this one? Count 0's at this level - 8

alabar_a_la_alabarda $01000100 \overline{0} 10 \overline{001000110}$

Example: Rank

Consider asking for the rank of this "a"

Example: Rank

Consider asking for the rank of this "a"

Example: Rank

Consider asking for the rank of this "a"

Example: Rank

Consider asking for the rank of this "a"

Example: Rank

Consider asking for the rank of this "a"

If we are 1-indexing

Example: Rank

This procedure turns rank for any character in the alphabet into Ig σ rank calculations over bitvectors.

We can answer rank queries for an arbitrary character in $\lg \sigma^{*} \mathrm{O}(1)=\mathrm{O}(\lg \sigma)$ time. For small, constant alphabets, through the magic of Big-O, this is constant time. :)

Example: Select

Select the 3rd "l" (at what index does it occur?)

Example: Select

Select the 3rd "l" (at what index does it occur?)

Here, we start at the bottom of the tree and work up.

Example: Select

Select the 3rd "l" (at what index does it occur?)

Where does this"l" go at this level? It's the 3rd 0

Here, we start at the bottom of the tree and work up.

Example: Select

Select the 3rd "l" (at what index does it occur?)

Here, we start at the bottom of the tree and work up.

Example: Select

This procedure turns select for any character in the alphabet into $\lg \sigma$ select calculations over bitvectors.

We can answer select queries for an arbitrary character in $\lg \sigma^{*} \mathrm{O}(1)=\mathrm{O}(\lg \sigma)$ time. For small, constant alphabets, through the magic of Big-O, this is constant time. :)

Succinct Data Structures

We have only scratched the surface on what is possible with rank \& select and succinct data structures in general.

However, we'll assume familiarity with rank and select moving forward as we talk about data structures in Comp Bio that use them.

Gonzalo Navarro alone publishes 14-24 papers / year in this field :):

$2019(14+10)$	$2018(14)$
$2017(21)$	$2016(19)$

A google search on Gonzalo, and succinct data structures will send you down a wonderful rabbit-hole; I recommend you try it!

Some practical advice

Succinct data structure papers tend to be quite theoretical (go figure!).

Luckily, there is a go-to library for implementation of these ideas.

O Watch $119 \quad$| | Star |
| :---: | :---: |
| 1,582 | | Y Fork 243

All your code in one place

Over 40 million developers use GitHub together to host and review code, project manage, and build software together across more than 100 million projects.

Some practical advice

Succinct data structure papers tend to be quite theoretical (go figure!).

Luckily, there is a go-to library for implementation of these ideas.
O Watch $119 \quad \star$ Star $1,582 \quad$ \& Fork 243

All your code in one place
Over 40 million developers use GitHub together to host and review code, project manage, and build software together across more than 100 million projects.

Provides a modern, modular C++ implementation of many different succinct data structures.

Some practical advice

Create an FM-index over some text?

```
#include <sdsl/suffix_arrays.hpp>
#include <string>
#include <iostream>
string index_file = string(argv[1])+index_suffix;
csa_wt<wt_huff<rrr_vector<127> >, 512, 1024> fm_index;
if (!load_from_file(fm_index, index_file)) {
    ifstream in(argv[1]);
    if (!in) {
        cout << "ERROR: File " << argv[1] << " does not exist. Exit." << endl;
        return 1;
    }
    cout << "No index "<<index_file<< " located. Building index now." << endl;
    construct(fm_index, argv[1], 1); // generate index
    store_to_file(fm_index, index_file); // save it
}
```


Some practical advice

Perform rank queries over a bit vector?

```
    #include <iostream>
    #include <sdsl/bit_vectors.hpp>
```

```
#include <iostrea| using namespace std;
```

\#include <iostrea| using namespace std;
\#include <sdsl/bi using namespace sdsl;
\#include <sdsl/bi using namespace sdsl;
int main()
int main()
using namespace s {
using namespace s {
using namespace s bit_vector b = {0,1,0,1,1,1,0,0,0,1,1};
using namespace s bit_vector b = {0,1,0,1,1,1,0,0,0,1,1};
size_t zeros = rank_support_v<0>(\&b)(b.size());
size_t zeros = rank_support_v<0>(\&b)(b.size());
bit_vector::select_0_type b_sel(\&b);
bit_vector::select_0_type b_sel(\&b);
int main()
int main()
{
{
bit_vector b : }
bit_vector b : }
for (size_t i: cout << endl;
for (size_t i: cout << endl;
b[i] = 1; }
b[i] = 1; }
rank_support_v<1> b_rank(\&b);
rank_support_v<1> b_rank(\&b);
for (size_t i=0; i<=b.size(); i+= b.size()/4)
for (size_t i=0; i<=b.size(); i+= b.size()/4)
cout << "(" << i << ", " << b_rank(i) << ") ";
cout << "(" << i << ", " << b_rank(i) << ") ";
cout << endl;
cout << endl;
}

```
}
```


Some practical advice

How about selecto

```
#include <iostream>
#include <sdsl/bit_vectors.hpp>
using namespace std;
using namespace sdsl;
int main()
{
    bit_vector b = {0,1,0,1,1,1,0,0,0,1,1};
    size_t zeros = rank_support_v<0>(&b)(b.size());
    bit_vector::select_0_type b_sel(&b);
    for (size_t i=1; i <= zeros; ++i) {
        cout << b_sel(i) << " ";
    }
    cout << endl;
}
```


Some practical advice

You get the idea! An incredibly powerful library, at your fingertips.

sdsl Cheat Sheet

Data structures

The library code is in the sdsl namespace. Either import the namespace in your program (using namespace sdsl;) or qualify all identifieres by a sds 1 : :-prefix
Each section corresponds to a header file. The file is hyperlinked as part of the section heading.
We have two types of data structures in sdsl. Self-contained and support structures. A support object s can extend a access to o Support structures functionality), but requires in their class names.

Integer Vectors (IV)

The core of the library is the class int_vector $\langle w\rangle$ Parameter w corresponds to the fixed length of each elemen in bits. For $w=8,16,32,64,1$ the length is fixed during compile time and the vectors correspond to
(default) the length can be set during runtime_ If $w=0$ int vector $\gg(n, x, \ell)$, with n equals size, x default integer value, ℓ width of integer (has no effect for $w>0$).
Public methods: operator[i], size(), width(), data().
Manipulating int_vector $\langle w\rangle \mathrm{v}$
$\begin{array}{ll}\vee[i]=x & \text { Set entry } \mathrm{v}[i] \text { to } x . \\ \mathrm{v} . \text { width }(\ell) & \text { Set width to } \ell, \text { if } w=0\end{array}$
v.resize (n) Resize v to n elements.

Useful methods in namespace sdsl::util:
$\begin{array}{ll}\text { set_to_value (v, } k) & \text { Set } \mathbf{v}[i]=k \text { for each } i \\ \text { set_to id }(\mathrm{v}) & \operatorname{Set} \mathbf{v}[i]=i \text { for each } i .\end{array}$
set_to_id(v)
$\bmod (\mathrm{v}, m) \quad$ bits (v)
mod(v, m)
bit_compress(v)
Set elements to random bits. Set $\mathbf{v}[i]=\mathrm{v}[i] \bmod m$ for each i, Gets $x=\max _{i} \mathrm{v}[\ell]$ and $\ell=\lceil\log (x-1)\rceil+$ and packs the entries in ℓ-bit integers.
Expands the width of each integer to bits, if $\ell \geq$ v.width().

Compressed Integer Vectors (CIV)
For a vector \mathbf{v}, enc_vector stores the self-delimiting coded deltas ($\mathrm{v}[i+1]-\mathrm{v}[i])$. Fast random access is achieved by sampling values of \mathbf{v} at rate t_dens. Available coder are coder::elias_delt
Class vlc_vector stores each $\mathrm{v}[\mathrm{i}]$ as self-delimiting codeword. Samples at rate t_{-}dens are inserted for fast random access. Class dac_vector stores for each value x the least (t _ $\mathrm{b}-1$) significant bits plus a bit which is set if $x \geq 2^{b-1}$. In the latter case, the process is repeated with $x^{\prime}=x / 2^{b-1}$

Bitvectors (BV)

Class	Description	Space
bit_vector	plain bitvector	$64 \mid n / 64+1\rceil$
bit_vector_il	interleaved bitvector	$\approx n(1+64 / K)$
rrr_vector	H_{0}-compressed bitvector	$\approx\left\lceil\log \binom{n}{m}\right\rceil$
sd_vector	sparse bitvector	$\approx m \cdot(2+\log$

Rank Supports (RS)

RSs add rank functionality to BV. Methods rank (i) and operator (i) return the number of set bits ${ }^{2}$ in the prefix $[0 . . i)$ of the supported BV for $i \in[0, n]$.

Class	Compatible BV	+ Bits	Time
rank_support_v	bit_vetor	$0.25 n$	$\mathcal{O}(1)$
rank_support_v5	bit_vector	$0.0625 n$	$\mathcal{O}(1)$
rank_support_scan	bit_vector	64	$\mathcal{O}(n)$
rank_support_il	bit_vector_il	128	$\mathcal{O}(1)$
rank_support_rrrx	rrr_vector	80	$\mathcal{O}(k)$
rank_support_sd	sd_vector	64	$\mathcal{O}\left(\log \frac{n}{m}\right)$
rank_support_hyb	hyb_vector	64	-

Select Supports (SLS)

SLSs add select functionality to BV. Let m be the number of et bits in BV. Methods select (i) and operator (i) return the position of the i-th set bit ${ }^{3}$ in BV for $i \in[1 . . m]$.
$\left.\begin{array}{llll}\text { Class } & \text { Compatible } & \text { BV } & + \text { Bits }\end{array}\right)$ Time 1 (1) $\begin{array}{llll}\text { select_support_rrr } & \text { rrr_vector } & 64 & \mathcal{O}(\log n)\end{array}$ Call util::init_support(sls, bv) to initialize sls to bitvect bv. Call sls (i) to get $\operatorname{select}(i)=\min \{j \mid \operatorname{rank}(j+1)=i\}$.
Wavelet Trees (WT $=\mathbf{B V}+\mathbf{R S}+\mathbf{S L S}$)
Wavelet trees represent sequences over byte or integer
alphabets of size σ and consist of a tree of BVs. Rank and elect on the sequences is reduced to rank and select on BVs, and the runtime is multiplied by a factor in $\left[H_{0}, \log \sigma\right]$

Class	Shape	ex_ordered	Default alphabet	Travers able
wt_rlmn	underlying WT dependent			\times
wt_gmr	none	\times	integer	\times
wt_ap	none	\times	integer	\times
wt_huff	Huffman	\times	byte	\checkmark
wm_int	Balanced	\times	integer	\checkmark
wt_bled	Balanced	\checkmark	byte	\checkmark
wt_hutu	Hu-Tucker	\checkmark	byte	\checkmark
wt_int	Balanced	\checkmark	integer	\checkmark

traversable). In the following let c be a symbol, i, j, k, and q integers, v a node, and r a range.
Public methods: size(), operator $[i], \operatorname{rank}(i, c), \operatorname{select}(i, c)$, inverse_select (i), begin(), end ().
Traversable WTs provide also: root (), is_leaf (v), empty (v), $\operatorname{size}(v), \operatorname{sym}(v), \operatorname{expand}(v), \operatorname{expand}(v, r)$,
expand (v, std:: vector $\langle r>$), bit _vec (v), seq (v)
ex_ord
wt androrithm contains the following generic WT method (let $w t$ be a WT object): intersect ($w t$, vector $\langle r>$), quantile freq $(w t, i, j, q)$ interval symbols ($w t, i, j$, symbol_lte ($w t, c$), symbol_gte $(w t, c)$,
restricted_unique_range_values $\left(w t, x_{i}, x_{j}, y_{i}, y_{j}\right)$.

Suffix Arrays (CSA $=\mathbf{I V}+\mathbf{W T}$)

Compressed suffix arrays use CIVs or WTs to represent the suffix arrays (SA), its inverse (ISA), BWT, Ψ, and LF. CSAs can be built over byte and integer alphabets.
Class Description
csa_bitcompressed Based on SA and ISA stored in a IV
Based on the BWT stored i
Public methods: operator [i], size(), begin(), end (). Public members: isa, bwt, lf, psi, text, L, F, C, char2comp, comp2char, sigma.
Policy classes: alphabet strategy (e.g. byte_alphabet, succinct_byte_alphabet, int_alphabet) and SA sampling trategy (e.g. sa_order_sa sampling

Longest Common Prefix (LCP) Arrays
Class
cpp_bitcompressed Values in a int_vector<>.
Direct accessible codes used
cp_byte
lcp_wt
cp_vlc
cp_support_sada cp_support_tree Public methods: operator [i], size(), begin(), end ()

Balanced Parentheses Supports (BPS)

We represent a sequence of parentheses as a bit_vector. An opening/closing parenthesis corresponds to $1 / 0$

Class Description

bp_support_g

$$
\begin{aligned}
& \text { Description } \\
& \text { Two-level pio }
\end{aligned}
$$

Two-level pioneer structure. bp_support_sada Min-max-tree over excess sequence Public methods: find_open (i), find_close (i), enclose (i) double_enclose (i, j), excess (i), rr_enclose (i, j), rank $(i)^{4}$ select (i).
Call util:: init_support(bps,bv) to initialize a BPS bps to bit_vector bv.

Some practical advice

You get the idea! An incredibly powerful library, at your fingertips.

Suffix Trees (CST $=\mathbf{C S A}+\mathbf{L C P}+\mathbf{B P S}$)
A CST can be parametrized by any combination of CSA ,LCP, and BPS. The operation of each part can still be accessed through member varaibles. The additional operations are listed below. CSTs can be built for byte or integer alphabets.
Class Class Description
cst_sada Represents a node as position in BPS. Navigational operations are fast (they are directly transated in BPS operations on the DFS-BPS). Spac $n+o(n)+|C S A|+|L C P|$ bits.
cst_sct3 Represents nodes as intervals. Fast construction, but slower nate: $3 n+$ $(n)+|C S A|+|L C P|$
Public types: node_type. In the following let v and w be nodes and i, d, lb,
Pubic mothods: size(), nodes(), root(), begin(), end(), begin_bottom_up(), end_bottom_up, size (v), is_leaf (v), $\mathrm{rb}(v)$, id (v), inv_id (i), sn (v), select_leaf (i), node $(l b$,
$r b)$, parent (v), sibling $(v), 1 \mathrm{ca}(v, w)$, select child $(v$, $\operatorname{child}(v, c), \operatorname{children}(v), \operatorname{sl}(v)$, wl (v, c),
leftmost_leaf (v), rightmost_leaf (v)
Public members: csa, 1 cp .
The traversal example shows how to use the DFS-iterator.
Range Min/Max Query (RMQ)
A RMQ rmq can be used to determine the position of the minimum value ${ }^{5}$ in an arbitrary subrange $[i, j]$ of an preprocessed vector v. Operator operator (i, j) returns $x=\min \{\mathrm{r} \mid r \in[i, j] \wedge \mathrm{v}[r] \leq \mathrm{v}[k] \forall k \in[i, j]\}$ Class Time rmq_support_sparse_table $n \log ^{2} n$ $\mathcal{O}(1)$ rmq_succint_sada $4 n+o(n)$ $4 n+o(n)$
$2 n+o(n)$

Constructing data structures

Let o be a WT-, CSA-, or CST-object. Object o is built with construct (o,file, num_bytes $=0$) from a sequence stored in file. File is interpreted dependent on the value of num_bytes Value File interpreted as
num_bytes=0 serialized int vector<>
num_bytes=1 byte sequence of length util::file_size(file) num_bytes=2 16 -bit word sequence. num_bytes=4 32 -bit word sequence num_bytes=8 64-bit word sequence Note: construct writes/reads data to/from disk during construction. Accessing disk for small instances is a considerable overhead. construct_im(o,data,num_bytes $=0$) will build 0 using only main memory. Have a look at this handy tool for an example.

Configuring construction

The locations and names of the intermediate files can be configured by a cache_config object. It is constructed by cache_config(del,tmp_dir,id, map) where del is a boolea variable wich spefictif the is a deleted after construction, tmp_dir is a path to the directory
where the intermediate files should be stored, id is used as part of the file names, and map contains a mapping of keys (e.g. conf :: KEY_BWT, conf::KEY_SA,...) to file paths,

The cache_config parameter extends the construction method to: construct (o,file, config, num_bytes)
The a cache_config object, and o a sdsl object) should be handy
cache_file_name (key, config)
cactile_
register_cache_file(key, config)
load from cache(o, key config)
store_to_cache (o, key, config)

Resource requirements

Memory: The memory peak of CSA and CST construction occurs during the SA construction, which is 5 times the texts size for byte-alphabets and inputs $<2 \mathrm{GiB}$ (see the Figure below for a 200 MB text) and 9 times for larger inputs. For integer alphabets the construction takes about twice the space of the resulting output.
Time: A CST construction processes at about $2 \mathrm{MB} / s$. The Figure below shows the resource consumption during the construction of a cst sct3<> CST for 200 MB English text For a detailed description of the phases click on the figure

This diagram was generated using the sample program memory-visualization.cpp.

Reading and writing data

Importing data into sdsl structures

load_vector_from_file(v, file, num_bytes)
Load file into an int_vector v. Interpretation of file depends on num_bytes; see method construct.

Store sdsl structures

Use store_to_file(o, file) to store an sdsl object o to file Object o can also be serialized into a std: :ostream-object out by the call o.serialize(out).

Load sdsl structures

Use load_from_file(o, file) to load an sdsl object o, which is stored in file. Call o.load(in) reads ofrom std::istream-object in.

Utility methods
More useful methods in the sdsl::util namespace
Method Description
pid() Id of current process.
id() \quad Get unique id inside the process
basename (p) Get filename part of a path p.
dirname (p) Get directory part of a path p.
demangle(o) Demangles output of typeid(o).name()
demangle2(o) Simplifies output of demangle. E.g. removes sds1::-prefixes,
to string(o) Transform object o to a string.
assign $(01,02)$ Assign 01 to o2, or swap o1 and o2 if the objects
are of the same type.
clear (o) Set o to the empty object.

Measuring and Visualizing Space

size_in_bytes(o) returns the space used by an sdsl object o. Call write_structure ${ }^{\text {JSSON_FORMAT }}$ ($(0$, out) to get a detaile space breakdown written in JSON format to stream out. <HTML_FORMAT> will write a HTML page (like this), which
includes an interactive SVG-figure.

Methods on words

Class bits contains various fast methods on a 64 -bit word x.
Here the most important ones
Method
Description
bits::cnt $(x) \quad$ Number of set bits in x.
bits::sel $(x, i) \quad$ Position of i-th set bit, $i \in[0, \operatorname{cnt}(x)-1)$
bits: : $10(x) \quad$ Position of least significant set bit.
bits: :hi $(x) \quad$ Position of most significant set bit.
Note: Positions in x start at 0 . 10 and hi return 0 for $x=0$.

Tests

A make test call in the test directory, downloads test inputs, compiles tests, and executes them.

Benchmarks

Directory benchmark contains configurable benchmarks for various data structure, like WTs, CSAs/FM-indexes (measuring time and space for operations count, locate, and extract).

Debugging

You get the gdb command pv <int_vector> <idx1> <idx2> which displays the elements of an int_vector in the range [idx1, idx2] by appending the file sdsl.gdb to your .gdbinit.

© Simon Gog

Cheatsheet template provided by Winston Chang ww stdout.org/ ~winston/latex

Notes

1 select_0_type not defined for sd_vector.
2 It is also possible to rank 0 or the patterns 10 and 01.
3 It is also possible to select 0 or the patterns 10 and 01 .
4 For PBS the bits are counted in the prefix $[0 . . i]$.
5 Or maximum value; can be set by a template parameter.

